Skip to contents

The LCZ4r general functions are designed to facilitate the retrieval, analysis, and visualization of Local Climate Zones (LCZ) when LCZ related data is not readily available. They are engineered to get the LZ map, compute LCZ classes, and extract specific parameters of interest, including Sky View Factor (SVF), impervious surface fraction, and roughness element height, among others.

Quickstart DEMO video

Introduction to General Functions

(Click to Watch video)

Getting Started

The general functions, each serving a unique purpose:

Function Description Data Required Internet Access Required
lcz_get_map() Obtain your LCZ map from Global LCZ map Not needed Yes
lcz_get_map_euro() Obtain your LCZ map from European LCZ map Not needed Yes
lcz_get_map_usa() Obtain your LCZ map from Continental United States LCZ map Not needed Yes
lcz_get_map2() Obtain the LCZ map Not needed Not needed
lcz_plot_map() Visualize the LCZ map Not needed Not needed
lcz_cal_area() Calculate LCZ areas Not needed Not needed
lcz_get_parameters() Retrieve LCZ parameters Not needed Not needed
lcz_plot_parameters() Visualize LCZ parameters Not needed Not needed

Tips: Utilize the help(lcz_*) function to access comprehensive documentation for each LCZ function. For instance, you can explore details about the lcz_get_map function by typing help(“lcz_get_map”).

Obtain and visualize the LCZ map

The lcz_get_map() function facilitates obtaining the LCZ map for your chosen city or a specific Region of Interest (ROI). In our demonstration, we utilized a couple of cities around the world.

library(LCZ4r)
# Get the LCZ map for your city
lcz_map <- lcz_get_map(city="São Paulo")

# Visualize the obtained LCZ map
lcz_plot_map(lcz_map)

euro_map <- lcz_get_map_euro(city="Paris")
lcz_plot_map(euro_map)

euro_map <- lcz_get_map_euro(city="London")
lcz_plot_map(euro_map)

lcz_map <- lcz_get_map(city="Sydney")
lcz_plot_map(lcz_map)

lcz_map <- lcz_get_map(city="京")
lcz_plot_map(lcz_map)

usa_map <- lcz_get_map_usa(city = "New York")
lcz_plot_map(usa_map)

my_map <- lcz_get_map(city = "Nairobi")
lcz_plot_map(my_map)

Here are some tips to enhance your experience:

  • 1. As an alternative, users can download their own LCZ map from WUDAPT or LCZ generator application and integrate them into the LCZ4r system using the lcz_get_map2(LCZmap, city = “your city”).

  • 2. Fallback Option: In rare instances where the lcz_get_map() function faces inconsistencies (e.g., due to connectivity issues), you can rely on lcz_get_map2() as an alternative solution.

  • 3. Custom ROI: Utilize the lcz_get_map() function along with a shapefile for your ROI by coding lcz_get_map(roi=“your_shp”). Refer to the R package sf documentation for guidance on loading the shapefile into R. ## Calculate LCZ areas

Calculate LCZ areas

This lcz_cal_area() function calculates the area for each LCZ classes, as follows:

lcz_map <- lcz_get_map(city="Rio de Janeiro")
lcz_cal_area(lcz_map)

Tips: this function provides a table.csv of the calculated LCZ areas, coding like this: lcz_cal_area(lcz_map, iplot = FALSE)

Retrieve and visualize LCZ parameters

This lcz_get_parameters()function gives you to retrieve diverse LCZ parameters, encompassing minimum, maximum, and mean values, drawn from Stewart and Oke (2012). These parameters are convertible into either shapefiles or a raster stack, where multiple rasters are aggregated into a single file.

Here’s a glimpse of the available LCZ parameters:

Code Parameter Description Unit
SVF1 Sky View Factor Minimum Sky View Factor [0-1]
SVF2 Sky View Factor Maximum Sky View Factor [0-1]
SVF3 Sky View Factor Mean Sky View Factor [0-1]
AR1 Aspect ratio Minimum Aspect Ratio [0-3]
AR2 Aspect ratio Maximum Aspect Ratio [0-3]
AR3 Aspect ratio Mean Aspect Ratio [0-3]
BSF1 Building Surface Fraction Minimum Building Surface Fraction [%]
BSF2 Building Surface Fraction Maximum Building Surface Fraction [%]
BSF3 Building Surface Fraction Mean Building Surface Fraction [%]
ISF1 Impervious Surface Fraction Minimum Impervious Surface Fraction [%]
ISF2 Impervious Surface Fraction Maximum Impervious Surface Fraction [%]
ISF3 Impervious Surface Fraction Mean Impervious Surface Fraction [%]
PSF1 Vegetation Surface Fraction Minimum Vegetation Surface Fraction [%]
PSF2 Vegetation Surface Fraction Maximum Vegetation Surface Fraction [%]
PSF3 Vegetation Surface Fraction Mean Vegetation Surface Fraction [%]
TSF1 Tree Surface Fraction Minimum Tree Surface Fraction [%]
TSF2 Tree Surface Fraction Maximum Tree Surface Fraction [%]
TSF3 Tree Surface Fraction Mean Tree Surface Fraction [%]
HRE1 Height Roughness Elements Minimum Height Roughness Elements [meters]
HRE2 Height Roughness Elements Maximum Height Roughness Elements [meters]
HRE3 Height Roughness Elements Mean Height Roughness Elements [meters]
TRC1 Terrain Roughness class Minimum Terrain Roughness class [meters]
TRC2 Terrain Roughness class Maximum Terrain Roughness class [meters]
TRC3 Terrain Roughness class Mean Terrain Roughness class [meters]
SAD1 Surface Admittance Minimum Surface Admittance [J m-2 s1/2 K-1]
SAD2 Surface Admittance Maximum Surface Admittance [J m-2 s1/2 K-1]
SAD3 Surface Admittance Mean Surface Admittance [J m-2 s1/2 K-1]
SAL1 Surface Albedo Minimum Surface Albedo [0-0.5]
SAL2 Surface Albedo Maximum Surface Albedo [0-0.5]
SAL3 Surface Albedo Mean Surface Albedo [0-0.5]
AH1 Anthropogenic Heat Outupt Minimum Anthropogenic Heat Outupt [W m-2]
AH2 Anthropogenic Heat Outupt Maximum Anthropogenic Heat Outupt [W m-2]
AH3 Anthropogenic Heat Outupt Mean Anthropogenic Heat Outupt [W m-2]
z0 Roughness Lenght Roughness Lenght class [meters]

Rio de Janeiro LCZ parameters

# Extract the LCZ parameters for raster stack format
lcz_map <- lcz_get_map(city="Rio de Janeiro")
LCZpar <- lcz_get_parameters(lcz_map, istack = TRUE)
LCZpar

Maps

lcz_plot_parameters(LCZpar, iselect = "SVF3")

lcz_plot_parameters(LCZpar, iselect = "BSF2")

lcz_plot_parameters(LCZpar, iselect = "z0")